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Abstract.

A quasi-linear Zakharov simulation model has been constructed to study

intense Langmuir waves and precipitating field-aligned electrons observed in the auroral
ionosphere at altitudes below 1000 km. This self-consistent model couples the magnetized
Zakharov equations to a modified quasi-linear diffusion equation, which includes an
advective term describing electrons streaming into the simulation region. Two-dimensional
beam-driven simulations demonstrate that for the parameters of the auroral ionosphere
below altitudes of 1000 km, Langmuir wave-wave and wave-particle interactions occur on
similar timescales. The resulting reduced electron distribution has multiple shoulders and
is a result of a balance between quasi-linear beam-flattening, wave-wave instabilities and

beam replenishment due to streaming electrons.

1. Introduction

Electron streams are unstable to the excitation of Langmuir
waves in many space plasma environments, such as the auroral
ionosphere [McFadden et al., 1986], the solar wind [Lin et al.,
1986], and the Earth’s electron foreshock [Kellogg and Mon-
soon, 1978]. In the auroral ionosphere at rocket altitudes, in-
tense bursts of Langmuir waves are detected in conjunction
with transient, field-aligned electron fluxes, with shoulder-like
features in the reduced parallel electron velocity distribution
(i.e., the electron velocity distribution integrated over veloci-
ties perpendicular to the background B field). The sounding
rockets of the University of California, Berkeley, have ob-
served both large-amplitude Langmuir waves (E ~ 50-500
mV m ') and energetic, field-aligned electrons (100 eV to 3
keV) at altitudes near 700 km [McFadden et al., 1986; Boehm,
1987; Ergun et al., 1991]. These bursts of Langmuir waves
typically have been in the range of 20-100 ms in duration and
have amplitudes large enough to suggest that wave-wave ef-
fects may be important. The reduced electron distributions
associated with these bursts sometimes have multiple shoulder
features [Ergun et al., 1993]. The Freja satellite has made
similar Langmuir wave measurements at higher altitudes (1700
km), reporting Langmuir wave amplitudes of several hundred
mV m ™! [Kintner et al., 1995] and even as high as 1 Vm ™' in
some cases [Stasiewicz et al., 1996].

The Langmuir wave emissions are thought to arise from
modulations in the electron flux which produce a transient
positive slope in the reduced electron velocity distribution via
velocity dispersion [Ergun et al., 1993]. Sounding rockets typi-
cally have insufficient time resolution to detect this transient
positive slope in the reduced electron distribution and instead
measure time-averaged reduced electron distributions with
shoulders which are rarely if ever observed to have positive
slopes. They do, however, detect positive slopes in parallel (to
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the geomagnetic field) cuts of the electron distribution as well
as evidence for velocity dispersion [Ergun et al., 1993]. This is
not surprising since the time it takes to measure a distribution
cut is much shorter than the time to measure a reduced dis-
tribution. A positive slope in a parallel cut of the distribution,
however, does not imply instability. Hence the process of Lang-
muir wave excitation and the subsequent saturation of this
instability cannot be observed directly and remain poorly un-
derstood.

The rarity of observations with a well-defined positive slope
in the reduced electron distribution suggests that waves driven
by such an unstable distribution will remove the positive slope
through wave-particle interactions (i.e., quasi-linear beam flat-
tening). However, the advection of “fresh” electrons into the
region can act to restore this positive slope (beam replenish-
ment). Furthermore, the excited Langmuir waves can be un-
stable to wave-wave interactions, in which they may backscat-
ter. In this case, they will no longer be in resonance with
electrons near the beam velocity v = v, (i.e., the region of the
electron distribution with positive slope). The backscattered
waves act to flatten the distribution near v ~ —v,, instead of
flattening regions near v ~ v,. Because beam-resonant Lang-
muir energy is transferred to Langmuir waves that are not
beam resonant, backscatter has the net effect of reducing the
rate at which the beam’s slope in velocity space is decreased
(quasi-linear beam flattening).

In effect, this backscatter weakens quasi-linear flattening of
the beam. If the wave-wave interaction timescale were much
faster than that of wave-particle interactions, excited Langmuir
waves would be removed from resonance with the beam so
quickly that the beam would never flatten. In the opposite
timescale ordering, the beam would flatten before any back-
scatter could occur. Our model shows that for the parameters
of the auroral ionosphere near 700 km altitude, a balance
occurs between quasi-linear beam flattening, Langmuir wave-
wave interactions, and beam replenishment, resulting from the
fact that the wave-particle and wave-wave effects occur on
similar timescales. While the excited Langmuir waves cause

10,519



10,520

significant velocity diffusion of the beam, replenishment main-
tains a weakly unstable feature in the reduced distribution,
sustaining Langmuir waves (via growth due to the bump-on-
tail instability) for many milliseconds.

Particle-in-cell (PIC) simulations are capable of simulating
both wave-particle and wave-wave effects simultaneously, al-
though these simulations (which must be two-dimensional in
order to include magnetized Langmuir waves relevant to the
auroral ionosphere) are typically too noisy to study the ex-
tremely weak (i.e., beam growth rate y << w,. and beam
density n, << n,, where n,, is the background density) elec-
tron beams in the auroral ionosphere (for example, our quasi-
linear Zakharov simulations show a near—steady state growth
rate of y/w,, ~ 2 X 10~* at late times). Furthermore, PIC
simulations are usually too computationally demanding to use
realistic electron-ion mass ratios for realistic simulation times
(10-100 ms or 6 X 10*-6 X 105wp_e]). Limited work has been
done concerning weak beam instabilities in a two-dimensional
(2-D) magnetized plasma using PIC simulations [Dum and
Nishikawa, 1994]. However, these have been limited by their
noise level and relied on initializing the system with a cold
beam.

Vlasov simulations also include wave-particle and wave-
wave effects, but are too demanding to run in 2-D, required by
the magnetized environment of the auroral ionosphere for the
necessary long timescales. Previous studies of quasi-linear dif-
fusion in the auroral ionosphere [Muschietti et al., 1997] have
neglected wave-wave interactions, which we demonstrate in
this work to be important in modeling the observed large-
amplitude Langmuir waves. Zakharov (partial differential
equation) simulations have been performed to model auroral
Langmuir wave-wave effects; however, these assume a fixed
electron distribution and neglect the back reaction of excited
waves on the electron distribution [Newman et al., 1994b].

Studies performed by Muschietti and Dum [1991] have com-
pared wave-wave and wave-particle effects. However, these
studies have been one dimensional and have neglected the
magnetic effects which can be important in describing the
evolution of the Langmuir wave spectrum [Newman et al.,
1994b]. Other simulations have compared wave-wave and
wave-particle effects for inertial confinement fusion applica-
tions [Thomson et al., 1973, 1974]; however, these were 1 D and
not self-consistent. Furthermore, these simulations modeled
the evolution of a Maxwellian particle distribution driven by a
laser, rather than the bump-on-tail instability.

To study the interaction between observed Langmuir wave
bursts and precipitating field-aligned electrons, we present a
simulation model which includes both wave-wave and wave-
particle effects. This self-consistent model couples a magne-
tized generalization of the Zakharov equations [Zakharov and
Shabat, 1972; Newman et al., 1994b] with a modified quasi-
linear equation for the electron distribution, which allows us to
study extremely weak precipitating electron beams. The quasi-
linear equation is modified to include a term representing the
advection of electrons into the simulation region. A similar
model has been applied to inertial confinement fusion for the
case of unmagnetized one-dimensional Langmuir waves and
has been validated against particle-in-cell simulations [Sanbon-
matsu et al., 1999, 2000a, 2000b].

In this work, we demonstrate that both wave-wave and wave-
particle effects can interact to produce shoulders both parallel
and antiparallel to the beam direction, resulting from a com-
bination of nonlinear wave-wave scattering and quasi-linear
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diffusion of the electron distribution. The balance of this work
is organized as follows: First, we describe the quasi-linear Za-
kharov model in detail. Next, we present the parameters and
initial conditions for our simulations. We then present the
simulation results obtained from the quasi-linear Zakharov
model, as applied to the auroral ionosphere for altitudes near
700 km, compare with observations, and discuss the implica-
tions of our results.

2. Quasi-linear Zakharov Model
2.1. Modified Quasi-linear Diffusion

The quasi-linear diffusion equation evolves the spatial aver-
age of the particle velocity distribution function and is ob-
tained by taking the spatial average of the Vlasov equation.
Below we justify neglecting the off-diagonal components of the
quasi-linear diffusion tensor for the special case of magnetized
Langmuir waves in the auroral ionosphere and subsequently
motivate the advective beam replenishment term in the case of
parallel diffusion.

In a uniform background magnetic field B, the standard
quasi-linear diffusion equation is

OF (v, 1) =09, -D(v, ) 0. F.(v, 1), (1)

where F,(v, t) is the spatially averaged (over volume V') par-
ticle distribution function and the quasi-linear diffusion tensor
D(v, t) is

) 4’7T2€2 ! ” 272 a,a,
D(V, t) = lim W E kJ_ dkj_ |Ek(t)| ]n(b) kz ’
¢ u="1Jy

j
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where the J,, are the Bessel functions with arguments b =
k, v, /o., [Shapiro and Shevchenko, 1962; Kennel and En-
gelmann, 1966]. While this standard form takes the limit of an
infinite spatial domain, we treat the case of a finite spatial
domain with dimension parallel to the magnetic field of length
L and perpendicular to the magnetic field of length L . The
factor a, is defined by a, = (nw../v, )&, + k_.é, where &
and &, are unit vectors in the directions perpendicular and
parallel to the magnetic field, respectively. The factors a,, and
k. are evaluated at resonance, k,v, = w, — nw.,. In the
auroral ionosphere the electrons are strongly magnetized, in
the sense that k2 p? << 1, where p, = v,/w,, is the electron
Larmor radius of a thermal electron and v, is the electron
thermal velocity. This allows us to keep only the Cerenkov (i.e.,
Landau), Doppler (i.e., Doppler-shifted cyclotron resonance),
and anomalous Doppler resonances in (2) (i.e.,n = 0, *=1).
Although the electrons are strongly magnetized, the Langmuir
waves are only moderately magnetized in the sense that w_, ~
w0, (0, = 1.20,, for the case considered in this work). As
is usual in the quasi-linear approximation, terms correspond-
ing to additional nonlinear effects such as trapping are ne-
glected since they are higher order in E(z, t).

When we calculate the diffusion tensor components, we find
the perpendicular components to be exponentially small com-
pared with the parallel components for parameters of the au-
roral ionosphere near 700 km. This has been previously veri-
fied using test particle simulations [Sanbonmatsu et al., 1997].
Since perpendicular diffusion is much slower than diffusion
along the magnetic field lines, we can reduce the diffusion
equation to 1 D, along magnetic field lines:
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atP‘e(vza t) = aszzz(vzy t)azrzFe(vza t)a (3)

where the diffusion coefficient is now the parallel-parallel com-
ponent of the diffusion tensor and is proportional to the inte-
grated 2-D wave spectrum

2,2

4 -
Dzz(vz’ t) = Mf kL dki |klvb(kL7 kz = (1)/Uz, t)|2 (4)
“Jo

and we consider the finite spatial domain with parallel extent L
and perpendicular extent L | . The nonresonant contribution is
negligible for the parameters used in this work. The slowly
varying envelope potential ¢ (used in the Zakharov part of the
model) is defined by E = —Vy, where E is the slowly varying
envelope of the electric field E defined by E = (Ee ~'r +
c.c.)/2. Beam replenishment is modeled by source and sink
terms in the quasi-linear diffusion equation, which come from
the spatial average over a finite spatial domain (length L) of
the advective term in the Vlasov equation (this term goes to
zero in the standard quasi-linear derivation where an infinite
spatial domain is considered).

The complete derivation of the quasi-linear Zakharov model
is presented in the appendix of Sanbonmatsu et al. [2000b] with
explicit treatment of the two-timescale approximation in the
quasi-linear diffusion equation. Here we present a brief moti-
vation of the replenishment term used in our modified quasi-
linear diffusion equation. The 1-D Vlasov equation is

e
a[fe(z’ vZ? t) + vzazfe(z9 vZ’ l) - miEZal/)]cL’(Z’ vZ’ [) = 0’

®)
Taking the spatial average over length L gives
IF (v )+ 1 Lf (0 0) = £ 0, 0]
e 1 (L2
= meLf dz E(z, 1)3,8f.(z, v., t), (6)
-L)2

where F (v, t) is the spatial average, 6f.(z, v., t) = f.(z, v.,
t) — F,(v., t) represents spatial deviations from the average,
fi(uat) = fu(z = L/2, v, 1), and 2 (v, 1) = fu(z =
—L/2, v, t). Next, we substitute the k-space Fourier repre-
sentations of E(z, t) and 6f.(z, v,, t), solve for &f.(z, v,, t)
in terms of F,(v,, t), and subtract (6) from (5) (this is the
standard method used to derive the quasi-linear diffusion
equation). We obtain a modified version of the quasi-linear
diffusion equation:

a[Fe(vn t) = 6szzz(v7 t)asze(vzs t)
= U 0 = fi (o ), ()

where the second and third terms on the right-hand side come
from the advective term in the Vlasov equation and represent
electrons entering and exiting the region over which the spatial
average is taken.

We assume a bump-on-tail distribution for the electrons
entering region L at the left. This models the precipitating
electrons in the auroral zone entering a spatial region from
above. We assume the same bump-on-tail distribution for the
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initial condition of the spatial average F,(v., ¢ = 0). Thus,
initially, a pristine warm beam exists throughout region L.
These assumptions give f, (v, t) = F.(v,,t = 0) for v, > 0
and f (v,, t) = F.(v,, t = 0) for v, < 0. We also assume
that the distribution of electrons leaving region L is approxi-
mately equal to the average over L. That is, f, (v,, 1) = F,(v,,
t) for v, > 0 and f, (v., t) = F,(v,, t) for v, < 0. This
assumption has been verified by fully kinetic particle-in-cell
simulations applied to laser-plasma interactions in inertial
confinement fusion [Sanbonmatsu et al., 1999, 2000a,
2000b].

The modified quasi-linear diffusion equation now becomes

atFC(vZ7 t) = allzDZZ(v’ t)a'UZFe(UZ7 t)

vl
L

[F(‘(vl7 t) - F(‘(v27 t = 0)]' (8)

Physically, the advective terms on the right-hand side have the
effect of restoring the distribution to its original state, i.e., a
warm beam. It is in this sense that the beam is replenished. The
length L controls the strength of the replenishment. We refer
to L as the replenishment length, which is bounded above by
the length scales L4 for the gradients of the background
plasma parameters (ny, A,, @, and o,.) in the auroral
ionosphere and bounded below by the length L., corre-
sponding to the maximum resolution in k space (L ayes =
2r/Ak.) used in the Zakharov part of our simulations. That is,
we require L,pes << L << L4 Approximating the exiting
electron distribution by the spatial average will have the effect
of underestimating the strength of the replenishment terms.
We also note that the replenishment rate is proportional to
|v,|. Physically, the rate at which the beam is restored is pro-
portional to the flux of entering particles, causing replenish-
ment at higher velocities to occur more quickly.

2.2. Magnetized Zakharov Equations

The 2-D magnetized Zakharov equations, which describe
the mutual nonlinear interaction of high-frequency magnetized
Langmuir waves with low-frequency density perturbations, are
[Krasnoselskikh and Sotnikov, 1977; Newman et al., 1994b]

3 1 oo,
V2(13t ) WpeA;07 + l?L) - Eﬁ At

pe

®pe

2 V(onVY), ©)

(07 — c2V? + 2i%,,0,)8n = V3|V (10)

167Tm,‘

We assume the low-frequency density response én to be ion
acoustic waves or ion acoustic quasi-modes with damping rate
¥.4» Which is assumed to be linear in the ion acoustic frequency
kc, with the constant of proportionality determined by the
electron to ion temperature ratio 7,/7;, where c, is the ion
sound speed similar to Newman et al. [1994b]. The magnetized
Zakharov equations were discussed in detail by Newman et al.
[1994b].

The operator %, corresponds to growth (damping for 4, <
0) of Langmuir waves in a magnetized plasma due to the
reduced electron distribution F,.(v,, t) and has the k-space
representation [Clemmow and Dougherty, 1969]
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Table 1. Auroral Ionosphere Simulation Parameters
Parameter Symbol Value Units
Altitude 700 km
Gyroradius Pe 2.75 cm
Plasma frequency fre 0.95 MHz
Cyclotron frequency fee 1.15 MHz
Frequency ratio 0] 0,, 12
Electron bulk density n, 10* cm 3
Electron temperature T, 0.2 = 0.05 eV
Ion temperature T; 0.05 eV
Electron thermal speed v, 1.79 x 107 cms™!
Electron Debye length Ao 33 cm
Beam density ny/n, 0.0005
Beam velocity U/, 40
Beam thermal velocity Av,/v, 6
Halo density ny/n, 0.035
Halo thermal velocity 0/v, 6
Replenishment length L 24 km
Wave simulation length L yaves 0.14 km
Halo exponent B 5
’yL(k 1> kza t )
k. f.+ k.o
B 1 . w[Zw d3 zx: J2 . z vzfc' b 1 mfe
T 9,8, M %2 v - n(b) w— nw., — k.v,

(11)

The specific form of (11) used in our simulations is dependent
on the electron distribution and is discussed in section 3.1 in
detail in the context of the electron distribution used in our
simulations. Equation (11) requires v, << ., which is well
satisfied for our simulations. The real part of the dielectric
function ¢, = Re [e(w,, k)] is evaluated at the real frequency
® = w, [Newman et al., 1994a]. A cold fluid approximation is
used for this factor since the kinetic contribution to &, is
negligible for ionospheric electron velocity distributions and
since the Langmuir wave spectra considered in this work have
K2A\2 < 1.

The Zakharov portion of the quasi-linear Zakharov simula-
tion is the same as that used in the wave-wave studies by
Newman et al. [1994b, 1990] and Robinson and Newman [1990,
1988]. This method uses the pseudospectral technique to evolve
the Cartesian finite difference version of (9)—(10) in 2-D k space.

2.3. Coupled Wave and Particle Evolution

Equations (8)—(11) comprise the quasi-linear-Zakharov
model. Equation (8) describes the evolution of the spatially
averaged reduced electron velocity distribution due to the
wave spectrum, which enters into the diffusion coefficient
D..(v., t). The magnetized Zakharov equations (9)—(10)
evolve the wave spectrum according to the time-evolving
growth rate vy, (k,, k,, t), determined from the electron
distribution.

The quasi-linear Zakharov model has the following require-
ments for validity: The quasi-linear equation (8) requires the
autocorrelation time of the wave spectrum to be much smaller
than the diffusion time of the electron distribution (¢,. <<
tp). To justify use of the 1-D quasi-linear equation (8), per-
pendicular diffusion must be negligible (i.e., D, ,, D ., D,
<< D..). The validity of these assumptions for quasi-linear
diffusion near 700 km in the auroral ionosphere was verified
and discussed at length by Sanbonmatsu et al. [1997] for wave
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spectra similar to those produced in the simulations described
here. The Zakharov equations (9)-(10) require the ratio of
wave energy to thermal energy to be small (|E|*/87n,T, <<
1) in order to neglect higher-order nonlinearities. Further-
more, the two-timescale approximation requires the dispersive
terms in (9) to be small. That is, kA2 << 1 and k , << k, for
0., = 1.2w,,. All of the above approximations are well sat-
isfied in our simulations.

3. Simulations

3.1. Boundary and Initial Conditions

The parameters used in our simulations are determined
from measurements made by the Bidarca Berkeley sounding
rocket [Ergun et al., 1991]. Table 1 lists the values of the
parameters used in our simulations. The electron plasma and
cyclotron frequencies are calculated from the observed elec-
tron density and magnetic field, respectively. The electron and
ion temperatures are estimated from observed velocity distri-
butions, as are the electron Debye length and thermal velocity.

The model electron velocity distribution used as an initial
condition in our simulations is based on the electron distribu-
tions observed by the Bidarca spacecraft at altitudes near 700
km and is similar in form to that used by Muschietti et al. [1997].
The 2-D distribution (Figure 1) takes the form:

fe(vL’ Uy, t= 0) :fU(vL7 vz) +fh(vL7 vz) +fb(vla vz)’ (12)
filtss ) = s oxp [—(0 + w2/ 24,

_ 3nh 1
fh(vi’ v,) = 2m20° [1 ¥ (UZL + vf)/(?z]ﬁ/z’

ny
Tolvss 0 = G g At

exp [— (v, — v,)/2Av;] exp [—v%/2A4F ],

Log (v 2( VZ,V_L)/nO)
50
v
dl
o —_—
Ve
-50
1 ] L
-50 0 50
Y
Ve
Figure 1. Initial 2-D electron velocity distribution used in
simulations.
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Figure 2.
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(b)

log (£ (k, ,t))

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2
kz ;“e

Initial condition for simulation: (a) Reduced 1-D electron velocity distribution for parameters in

Table 1. (b) Reduced distribution in k space, assuming resonance w = k_v,, where k_.A, < 1 and k|, <<
k,. The solid circles on the curves represent the simulation grid.

where fy(v,, v,) is the bulk of the distribution (n, > n,,
n,), fn(v ., v,) is the background isotropic halo component
(due to scattered electrons), and f, (v, , v.) is the beam com-
ponent. The isotropic halo f,, (due to scattered electrons [see
Newman et al. [1994a]) is modeled by a generalized Lorentzian
function which falls off as v~ # and has width 6. The general-
ized Lorentzian is also known as a k function, where k = 3/2 —
1 [Mace and Hellberg, 1995]. Previous treatments have em-
ployed a simple power law (i.e., f, * v~ F); however, power
law distributions are not normalizable and thus require an
artificial cutoff velocity at some v,;, [Newman et al., 1994b;
Muschietti et al., 1997]. The parameters v,, Av,, and n, of the
Maxwellian beam distribution f, are chosen so that after flat-
tening via quasi-linear diffusion the evolved distribution re-
sembles the primary shoulder in observed electron distribu-
tions. We note that the other secondary shoulders observed in
our simulation results (discussed in detail in section 3.2) and in
spacecraft data are not present in our initial model electron
distribution. These secondary shoulders are produced self-
consistently by a combination of wave-wave and wave-particle
processes and emerge at late times in our simulations.

Since the quasi-linear Zakharov model evolves the reduced
1-D electron velocity distribution, (12) must be integrated over
perpendicular velocity v, (recall that it is positive slope in the
reduced 1-D electron distribution rather than the distribution
itself that produces Langmuir wave growth). This gives

Fe(vn = O) = FO(Uz) + Fh(vz) + Fh(vz)a (13)
ny
F — _ 2 2 2 ,

0(“:) \/Tﬂ_ve exp( vz/ ve)
ny, 1

Fh(‘(/z) = ﬁWy

ny
Fy(v.) = V2w, exp [~ (v. — v,)*/240;].

We note that the integrand in the integration over v, must
have a J,(k , v, /w,..)* weighting factor to obtain the proper
form of the Langmuir wave growth rate to be used in the

magnetized Zakharov equations. However, our Langmuir
spectra have k. A, << 1 andk, > k.. Since w,, ~ o, at 700
km, k v, ~ k, v, < w,, making k , v, << o, and the
weighting factor J, ~ 1.

The model reduced 1-D electron distribution is shown in
Figure 2 as a function of velocity (Figure 2a) and of wave
number (Figure 2b) assuming resonance o ~ w,. = k,v,.
This approximation is valid for the Langmuir spectra in our
simulations which have k*A? << 1 and k, << k. Since the
nonresonant contributions are always negligible, the quasi-
linear and Zakharov equations are solved in k space using w =~
k_.v,. The solid circles correspond to the simulation grid which
is uniform in &, but becomes nonuniform when mapped to
velocity space.

Using (13) as the form for the electron distribution reduces
the Langmuir wave growth rate to [Shapiro and Shevchenko,
1988]

2

(ko ko 1) = —— 22 | cos® Bo = O
yL 1y vz - 3w8r k? cos vl e v, = kz

kZ .Z’éF _w_wCE
20, S0 O =T |

where 6 = tan" ! (k , /k,). The first term represents the Cer-
enkov resonance (n = 0), and the second term represents the
first Doppler resonance (n = 1). Since there is a negligible
number of particles near the anomalous Doppler resonance
(v, ~ 88y, fork, ~ k), = w, /v, andn = —1), then = —1
term is neglected. Terms with |n| = 2 are neglected since they
are higher than second order in k , v, /0., and k% v% /w2, <
1.

The initial Langmuir wave growth rate y, (k., k ,, ¢t = 0) is
shown in 1-D slices in Figures 3a and 3b. In Figure 3a we see
the growth rate as a function of k, evaluated at k|, = 0. The
maximum growth rate (y, ~ 4.5 X 107?) lies near kA, =
0.0285, which corresponds to v,/v, = 35.1, i.e., the velocity
at which the slope of the reduced electron distribution is max-
imum (see Figure 2). After examining only those & for which
v, is positive (i.e., growth as opposed to damping), we see that
there is a finite width to the growth. This is due to the finite

(14)



10,524

(a) 0.006
0.004 [
0.002 |
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-0.002f
-0.004 |
-0.006 |

-0.008

-0.011

001%5.0.15-0.1-005 0 0.05 0.1 0.15 0.2
k,Ae

Figure 3.
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(b) o0.005[
0.004[

Y 0.003f

Dpe .002f

0.001]
R I e N
-0.001[

-0.002

kAo ='0.0285

0.0035 05 .004 -0.02 0 0.02 0.04 0.06

K, ho

(a) One-dimensional slice of initial growth rate vy, (k,, kK, = 0, ¢t = 0) plotted as a function of
k.. (b) One-dimensional slice of initial growth rate vy, (k, = k

k., t = 0) plotted as a function of k |,

z,max>

evaluated at the k, which maximizes the growth rate (k,A, ~ 0.0285).

region of positive slope in the reduced electron distribution
25 < wv,/v, < 40. The large dip to the left of the growth
region corresponds to the large damping for v, > v,. The
near-zero vy, atk, = 0 is due to the falloff of the damping rate
as v, — . Finally, the large damping at high |k_A,| is due to
low velocities in the bulk of the reduced electron distribution.

Figure 3b shows the growth rate as a function of k | for the
k. = k. max at which the growth is maximum (k A, =
0.0285). The positive growth (y, > 0) region is due to the
positive slope of the beam in the reduced electron distribution.
The damped regions (y, < 0), however, are mainly due to the
halo component of the reduced electron distribution interact-
ing through the Doppler resonance.

The initial wave spectrum consists of white noise electric
field fluctuations and allows fluctuations in én to develop self-
consistently. The boundary conditions for the Zakharov part of
the simulation are periodic. In order to approximate the wave
turbulence as statistically homogeneous the wave simulation
box must be small compared with the replenishment length so
that the wave simulation box represents a typical small subre-
gion L ... of the larger region L. The simulation has k-space
resolution Ak, A, = 0.0015, giving L., = 42001, ~ 0.14
km. The replenishment length is chosen to be L = 24 km,
consistent with the requirement that L,,.; << L << L4
While this value of L is within the constraints, the choice of L
is somewhat arbitrary. The effect of varying L on the simula-
tion results is discussed in section 4.

3.2. Evolution of Wave Spectrum
and Electron Distribution

Our simulation runs have two stages, which are described in
detail in sections 3.3 and 3.4. Initially, the bump-on-tail insta-
bility produces a burst of intense Langmuir waves, which dif-
fuse the beam in velocity space (via quasi-linear diffusion) and
also scatter to modes that are not beam resonant, where they
undergo Landau damping and distort the electron distribution
through quasi-linear diffusion. As seen in Figure 4, the initial
stage lasts approximately 3.4 ms, or 20,000w,;1. Subsequently,
at late times in the simulations a balance between beam re-
plenishment, beam flattening, and wave-wave backscatter is

achieved. The beam replenishment maintains a small but finite
positive slope in the reduced electron distribution, which, in
turn, sustains a near—steady state Langmuir wave level. We
have run our simulations out to 47 ms or 285,000w;el, where
we still observe a near-steady state in the average electrostatic
energy.

Figure 5 displays the time evolution of the reduced electron
velocity distribution. At early times the initial beam flattens.
Two secondary shoulders emerge in the antiparallel direction
between t = 13,200w,,' and 1 = 26,000w,," and subse-
quently relax. At late times the distribution consists of the
flattened beam, a secondary parallel shoulder, and a secondary
antiparallel shoulder. These features are explained in detail in
terms of the wave spectra below.

The distortion of the electron distribution is seen more
clearly in k space. Plate 1 displays the time history of both the
wave energy and the reduced electron distribution, allowing us
to see clearly that wave-particle and wave-wave effects act on
similar timescales. In Plate 1 the horizontal axis is parallel wave
number k.. The depth axis is time. In this case we display times
1 < w,t < 45,000. The vertical axis is the natural log of the
reduced k-space electron distribution (mapped from velocity

W .01

|

t\/vﬂ“wm\/wff\f\\ﬁv:
0 1 2 3
time (w,, tx 10%)

Figure 4. Time history of the average electric field strength
in dimensionless units (W = |E|?*/8mn,T.,).
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space using the resonance condition v, ~ ®,./k, assuming
k.A, << 1, which is consistent with our wave spectra). The
front edge of the surface is the initial condition for the k-space
reduced electron distribution, identical to that in Figure 2b.
Points closer to the center of the k. axis correspond the high-
velocity tails, while points at the outer edges correspond to the
bulk of the electron distribution. On the front edge the notch
to the right is the initial electron beam. The color of the surface
represents the log of the wave power at a particular k, and ¢,
integrated over k | . Plate 2 shows this same surface from the
“bird’s-eye” and “edge-on” perspectives. As time evolves (i.e.,
moving along the depth axis of the surface from front to back),
the beam-resonant waves grow (magenta) while the beam flat-
tens. The beam-resonant modes then backscatter to the left
side of the surface (localized green regions). The waves at
beam resonance become less intense (blue), while the back-
scattered waves flatten the electron distribution in the direc-
tion antiparallel to the beam (the plateaus on the left-hand
part of the back edge of the surface). These antiparallel pla-
teaus correspond to the two small notches in the reduced
electron distribution plot in velocity space (Figure 5). Notice
also the green region just to the right of the two plateaus. This
is the on-axis backscatter. The fact that the on-axis backscatter
occurs a few hundred plasma periods (w,,') later than the
off-axis backscatter may be due to the fact that the off-axis
modes are at lower parallel phase velocities and therefore
deform the electron distribution more readily (since D o
1/v,), causing the damping rate to decrease, allowing for
higher levels of wave energy [Sanbonmatsu et al., 2000a].
The full 2-D Langmuir spectra are shown in Figure 6, which
displays the spectra near-the-initial (Figure 6a), transient (Fig-
ure 6b), transition to steady state (Figure 6c), and steady state

(Figure 6d) stages. The Langmuir wave spectra are interpreted
in terms of wave-wave backscatter, which refers to a common
channel of nonlinear wave-wave scattering as described by
(9)—(10) [Goldman, 1984]. The backscatter instability occurs
when a forward propagating beam-resonant Langmuir wave
with frequency w, and wave number k, scatters off ion acoustic
density fluctuations with frequency w,, and wave number
ki = 2ko — k* (k* = 2Vm Jm\, ' << k, due to wave-
vector matching), producing a downshifted backward propa-
gating daughter Langmuir wave with frequency o, — w,, and
wave number —k, + k*. The backscatter instability is a
Stokes process (i.e., the daughter Langmuir wave is down-
shifted in frequency relative to the beam-driven wave). Cou-
pled to the Stokes decay is a weaker forward scattering anti-
Stokes interaction, where the original incident forward
propagating Langmuir wave couples to the ion acoustic re-
sponse at 2k, — k*, producing an upshifted forward scattered
Langmuir wave with frequency w, + ;, and wave number
ko + k;, = 3k, — k*. Although the anti-Stokes wave is
nonresonant and heavily Landau damped, and therefore of low
amplitude, it nevertheless can cause significant electron quasi-
linear diffusion since the forward scattered waves are at high k
and resonate with electrons at low velocity (recall that the
diffusion coefficient is proportional to 1/v).

3.3. Stage 1: Initial Transient

Figure 6a displays the early 2-D k-space wave spectrum of
the Langmuir wave envelope in the linear stage of the bump-
on-tail instability (w,.t = 2400). Since the oblique modes are
close to parallel, the perpendicular axis has been expanded by
a factor of 6. Wave power has developed near the beam wave
number k. ~ k, and has a finite extent in k, due to the finite
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represented by color and plotted on the (k,, t) plane. The log of the reduced electron distribution is
represented by the surface level and plotted over the (k., ¢) plane. The green band at the front edge of the

surface is the initial noise.

width of the beam. Doppler damping by the halo component of
the electron distribution limits the perpendicular extent of the
wave spectrum. The widths of the spectra are easily understood
upon examination of Figures 3a and 3b. The beam-resonant
waves react back on the electrons, flattening the reduced elec-
tron distribution via quasi-linear diffusion (Figure 5, w, .t =
2400).

The small amount of wave power on the left-hand side of
Figure 6a satisfies the kinematic matching conditions for back-
scatter of beam-excited Langmuir waves off ion acoustic waves
to backscattered Langmuir waves with phase velocities antipa-

rallel to the beam. These antiparallel modes indeed grow at
later times, as shown in Figure 6b, which displays the Langmuir
wave spectrum at time w,./ = 13,000. The sideways “V”
shape corresponds to contours of the magnetized Langmuir
wave dispersion relation. We note that at lower altitudes where
0. < w,, (“subcritical”) the topology of the Langmuir dis-
persion surface w(k,, k ;) changes. In this case a single lobe
(in the antiparallel direction) extended in k. and centered
around k£, = 0 would be expected rather than the two lobes
which occur in our simulations for o, > ,, (“supercritical”)
[Newman et al., 1994b].
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The wave power near k, = —k, on axis (k, =~ 0) is
analogous to the well-studied 1-D backscatter. The far-off-axis-
scattered modes (i.e., those in the lobes of the “V” with k | #
0) have frequencies close to the on-axis backscattered modes.
By this time (w,.t = 13,000) the waves have exceeded the
threshold for the backscatter instability, causing a large
amount of backscatter. Seeing that the beam has flattened by
this time (Figure 5), we conclude that wave-wave scattering
and beam flattening occur simultaneously during 2400 <
o,.t < 13,000. This is also demonstrated in Plate 2. The two
small notches in the electron distribution near v, ~ —10v,
and v, ~ —15v, are caused by quasi-linear diffusion due to
the backscattered waves. Since the quasi-linear diffusion is
proportional to v~ ', particles with lower velocities are more
susceptible to diffusion. Thus even very low levels of backscat-
tered waves are capable of diffusing the electron distribution at
these lower velocities. These notches are more prominent by

w,.t = 22,600 (Figure 5) and can be seen clearly in k space
in Plate 2.

Note that these notches at lower velocities (higher parallel
wave number) do not occur in 1 D for 0., > w,,.. Recall that
scattering to higher wave numbers in 1 D is not kinematically
permitted and violates energy conservation since the Langmuir
frequency increases with wave number. In 2-D for 0., > w,,,
however, the magnetic correction causes the Langmuir fre-
quency to decrease with angle to the magnetic field 6. As long
as the waves are scattered to sufficiently large k |, scattering to
higher &, is permitted.

The wave-particle interaction timescale is estimated by the
change in kinetic energy with time 7} ~ 10000w,,'. This is
distinguished from the quasi-linear diffusion time 7' ~
d,F (v, t)/F.(v,, t), which is the time it takes for particles to
diffuse out of the wave spectrum (discussed below). The time-
scale for wave-wave interactions is estimated from the time
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Figure 6. Two-dimensional wave spectrum for the Langmuir wave envelope potential for the (a) near-initial,
(b) transient, (c) transition to steady state, and (d) steady state stages.

rate of change of average Langmuir wave energy. As the wave
energy increases because of excitation by the positive velocity
slope of the beam, the particle energy decreases because of
beam flattening by the waves. Scattering occurs between ¢ =
2400w,,' and t = 13,000w,,", before the beam has com-
pletely flattened, as evidenced by Figures 5 and 6b and Plate 2.
Since the Langmuir wave growth rate is close to the bump-on-
tail instability growth rate, we conclude that during this time
the growth rate due to the beam sets the dominant timescale
and is much greater than the depletion rate due to wave-wave
scattering. Subsequently, wave energy levels exceed the thresh-
old for wave-wave scattering, which takes wave energy away
from beam-resonant phase velocities to low velocities, where it
is transferred to the bulk of the electron distribution via wave-
particle interactions (i.e., quasi-linear diffusion). The net effect
is the depletion of Langmuir wave energy. This depletion oc-
curs with decay rate (AW/At)/W, where W is the dimension-
less wave energy density W = |E|*/8mn,T,. The wave-wave
timescale is determined from the inverse of the decay rate for
times 11,000 < w, .t < 13,000, after the beam-resonant
mode growth rate has decreased significantly. The timescale
for wave-wave interactions is estimated tobe ¢, = 5000w ;el,
comparable to the wave-particle timescale.

We emphasize that both of these timescales actually change
with time throughout the simulation. At early times the wave-
particle interactions occur much faster than the wave-wave
interactions since the beam still has a steep slope and since the
wave power is relatively low (the scattering rate is proportional
to the wave power). At later times the wave-particle interac-

tions slow because of beam flattening, while the wave-wave
interactions speed up as a result of the large wave levels
present. Thus, to obtain a realistic evolution of either the
electron distribution or the wave spectrum, neither wave-
particle interactions nor wave-wave interactions may be ne-
glected.

The importance of including both wave-particle and wave-
wave effects is shown in Figure 7. Here we compare two sim-
ulations for similar parameters to those used above. The first
(“self-consistent”) is similar to the above simulations in that it
includes the self-consistent coupling of the quasi-linear diffu-
sion equation and the Zakharov equations. This simulation,
however, neglects the beam replenishment term. The second
simulation (“fixed particle distribution”) fixes the electron dis-
tribution and only evolves the wave spectrum, neglecting any
quasi-linear wave-particle effects. Since the growth rate of the
later simulation is fixed and does not decrease with time, the
waves grow to a much higher level, inconsistent with spacecraft
observations (discussed in section 3.5). Furthermore, the wave-
wave timescale is much faster (z,,, = 1500w,,") for the
simulation that is not self-consistent.

We note that the quasi-linear diffusion approximation is
indeed valid. To demonstrate this, we consider the time for
which the waves are at maximum ),/ ~ 10,000 since this is
the most likely time for the approximation to break down. At
this time the parallel spectral width is Ak, A, = 0.0045, giving
a phase velocity width of Av,, , ~ 5.5v,, using kA, ~ 0.0285
(the wave number at which the wave power is maximum). The
diffusion coefficient is D_, ~ 0.49v w,, (obtained numeri-
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Figure 7. Comparison of self-consistent simulation with a simulation which fixes the electron distribution
and only evolves the waves. The dashed curve represents the wave energy for the simulation that is not
self-consistent. The solid curve is the self-consistent simulation.

cally from the simulation). This gives a quasi-linear diffusion
time of 1, = (Av,.)?/2D.. =~ 31w,,". The autocorrelation
time for this spectrum is ¢, = 1/k.Av,, . ~ 6.3w,,', where
we have again used kA, ~ 0.0285. Thus¢,/t,. =~ 5, and the
quasi-linear approximation is valid. This approximation is sat-
isfied for the backscattered modes as well.

Returning to the wave history (Figure 4), we see that the
instability has saturated by .t 20,000. Without beam
replenishment the waves would decay to zero shortly after
o, = 20,000 (Figure 7). However, the beam replenishment
term attempts to restore the beam to its original form, allowing
it to maintain a small, but finite, positive slope, in turn main-

taining the wave levels.

3.4. Stage 2: Near-Steady State

Because the plateaus in the backward direction are not com-
pletely flat, there is still a finite damping rate at wave numbers
corresponding to these velocities. Thus the waves which cre-
ated these plateau features eventually diminish, as seen at the
final time presented in Plate 1, where the green scattered
waves have changed to yellow. We can also see this in the
k-space wave spectrum at time w, .t = 83,400 (Figure 6c).
Turning to the particles, we see in Figure 5 that the backward
plateaus have become less prominent. This is due to the re-
plenishment effect. Note that since the replenishment term is
proportional to v,, it takes longer to restore the electron dis-

tribution at these low velocities than it does to restore the
beam. Also notice the small increase in the reduced electron
distribution near v, ~ —40v, = —v,. This is due to scattered
waves with parallel wave numbers k, ~ —k,. As mentioned in
section 3.2, diffusion is proportional to »; !, so that diffusion at
lower wave numbers and higher velocities occurs more slowly.
So we only now begin to see the effect of the waves with &k, ~
—k,, on the reduced electron distribution. Furthermore, there
is a small amount of wave power near k, ~ 3k,. This is an
order of magnitude below even the low-level backscattered
modes. However, since it occurs at such high k_, it does influ-
ence the reduced electron distribution at late times. This fea-
ture is due to the interaction between the primary beam-
excited modes at k. ~ k, and the density perturbations which
are excited during the initial backscatter. Recall that for back-
scatter the daughter Langmuir wave has k., = —k,. Kine-
matic wave vector matching (i.e., conservation of momentum)
requires the ion acoustic density perturbation to have a wave
number such that k,, ~ 2k,. This can interact with the initial
beam mode to produce Langmuir waves at k, ~ k, + k,, ~
3k,. The off-axis anti-Stokes modes are due to the interaction
between the density perturbations near k,, ~ 2k, and off-axis
beam-excited modes.

We can see from the wave history (Figure 4) that the spa-
tially averaged wave energy has essentially reached a steady



10,530

SANBONMATSU ET AL.: AURORAL QUASI-LINEAR ZAKHAROV SIMULATIONS

(a) 900
800
700 [

600

mV/m

500 [*

400
300 [

200

100 w

Simulation B

0

(b) 600

500 [

400

mV/m

300

200

100

Bidarca measurements

o
a b
n

Figure 8.

3 4 5

time (ms)

(a) Time history of the electric field envelope at a fixed spatial point in the simulation in physical

units. (b) Time history of the electric field envelope as measured by the Bidarca spacecraft for a similar time

interval to that in Figure 8a.

state by ,.t > 50,000. By o,/ = 123,400 the wave spec-
trum and reduced electron distribution have reached a near
steady state. The wave spectrum steady state consists of the
beam-excited modes (k. ~ k,), the backscattered modes
(k, = —k,), and the low-level anti-Stokes modes near k., ~
3k, discussed above (Figure 6d). Our final 2-D k-space spec-
trum is similar to that determined by Newman et al. [1994b].
The reduced electron distribution has also reached a near-
steady state (Figure 5), which consists of the flattened beam,
the shoulder at v, = —wv, due to backscatter, and the small
shoulder (which is now more prominent) near v, ~ v,/3 due
to forward scattered anti-Stokes Langmuir waves.

On the whole, the near-steady state is a balance between
wave-wave effects, wave-particle effects, and beam replenish-
ment. The beam replenishment excites beam-resonant waves
which are dissipated via quasi-linear diffusion at phase veloc-
ities near v, ~ v, and via wave-wave backscatter to phase
velocities that are not beam resonant. Ultimately, the back-
scattered waves are absorbed by the electrons at v, =~ —v,. All
three effects are critical in obtaining the steady state. With no
beam replenishment the waves would damp away (Figure 7).
With no backscatter the waves would grow to very high levels.
With no quasi-linear diffusion the waves would grow to very

high levels, scatter, and be damped away by the electron halo
component (Figure 7).

3.5. Comparison With Observations

While the Langmuir waves and electron distributions vary
over a wide range in the auroral ionosphere, we use, as our
guide, observations made on board the Bidarca sounding
rocket which were presented by Boehm [1987], Ergun et al.
[1993], and Newman et al. [1994b]. One particular Langmuir
wave event was discussed by both Boehm [1987] and Newman
et al. [1994b], which presented a 7 ms segment of the Langmuir
wave envelope time history. This is shown in Figure 8 together
with our simulation results. The typical burst duration was
approximately 20-40 ms [Ergun et al. 1993].

Before comparing our wave simulation results with observa-
tions, we remind the reader that we are simulating plasma
turbulence, which is random by its very nature. Thus we do not
attempt to generate an exact fit to the observed wave histories
and frequency spectra. Rather, we attempt to generate Lang-
muir turbulence whose general characteristics are consistent
with the set of many spacecraft observations made near these
altitudes. These characteristics are the typical amplitude of the
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Langmuir wave envelope and the typical modulation fre-
quency.

Figure 8a presents a 5.5 ms sample of the time history for the
electric field envelope at a fixed spatial point in our simulation
in physical units. Figure 8b shows a 5.5 ms sample of the time
history for the electric field envelope observed by Bidarca. We
see that the typical wave amplitude in the simulation is approx-
imately 500 mV m~'. The typical measured amplitude for the
Bidarca sample is approximately 250 mV m~*. Observers have
reported amplitudes as high as 1 V m ™" [Stasiewicz et al., 1996],
though at higher altitudes. The differences between the simu-
lation results and observations are discussed in detail in section
4.

Figure 9 displays the temporal Fourier transforms of the
signals shown in Figure 8. Figure 9a is the simulation result,
and Figure 9b is the measured result. These transforms of the
Langmuir wave envelope are the modulation frequency spec-
tra. The width of the modulation frequency spectrum is related
to the width of the k-space spectrum in Figure 6d after being
mapped from k to w by the Langmuir wave dispersion relation.
Physically, waves with different k have different frequencies
and beat to produce modulations. The broader the spectrum in
k space is, the more possible combinations of different fre-

quencies there are, and hence the broader the modulation
frequency spectrum is. From Figure 9 we see that the simula-
tion modulation frequency spectrum is slightly narrower than
the observed modulation frequency spectrum but is neverthe-
less in reasonable agreement.

Figure 10 shows the final simulation reduced electron energy
distribution for comparison to a Bidarca reduced electron dis-
tribution presented in Figure Sc of Ergun et al. [1993] (shown
in Figure 11 of this paper). Note that the observed shoulder
features have negative slope, as opposed to the slight positive
slope in our simulations. Because of the limited time resolution
in the particle detectors (256 ms energy sweep period) the long
integration time would be expected to average out the positive
slope associated with transient features of the distribution as
well as substantially weaken the shoulder feature. Reduced
electron distributions with large positive slopes, such as that
used as the initial condition in our simulation (Figure 2), would
probably be unobservable because these features only last for
~ 10,000(01;,' or 1.7 ms. In the simulation the large forward, or
parallel, plateau is the flattened beam with energy E, corre-
sponding to v,. The backward, or antiparallel, plateau near E,
in the backward direction (corresponding to — v,,) is due to the
backscattered Langmuir waves. The secondary parallel plateau



10,532 SANBONMATSU ET AL.: AURORAL QUASI-LINEAR ZAKHAROV SIMULATIONS
1e-6 T T T T
<« le7p .
a /
Q
= backward )
- plateau anti-stokes
o]
S tesf A L feature / i
=
=
.E flattened beam
2
1e-9 L
antiparallel parallel
1e-10 . ' : :
1000 100 10 1 10 100 1000
Energy (eV) Energy (eV)
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is due to the weak forward scattering. This plateau is near an
energy of E,/9, corresponding to a velocity of v,/3 because of
the forward scattering process described in section 3.2. Thus
the ratio of the primary parallel to antiparallel plateau energies
is approximately 1. The ratio of the secondary parallel to pri-
mary plateau energies is approximately 1/9. We expect to see
plateaus at these ratios in observed reduced electron distribu-
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Figure 11. Reduced 1-D electron distribution measured by

the Bidarca sounding rocket from Ergun et al., 1993, Figure 5c.
Courtesy R. E. Ergun.

tions. The energy ratio of the two forward plateau energies is
consistent with the observed reduced electron distribution.
However, no antiparallel reduced electron distribution was
presented by Ergun et al. [1993]. We emphasize the need for a
statistical study of shoulder features in reduced electron dis-
tributions in the parallel and antiparallel directions.

4. Discussion

We have constructed a quasi-linear Zakharov model which
evolves the spatially averaged reduced electron distribution
and magnetized Langmuir wave spectrum self-consistently.
Simulations based on this model include wave-wave and wave-
particle nonlinearities as well as advective beam replenish-
ment.

The balance between the counteracting influences of quasi-
linear diffusion, which tends to destroy the unstable positive
slope in the precipitating “beam” electron distribution, and
advective replenishment, which tends to restore the instability,
can result in steady state turbulence with wave levels compa-
rable to those observed by sounding rockets. The weak beam
replenishment maintains a marginally unstable plateau-like
distribution, which results in a very small Langmuir wave
growth rate. This slow deposition of energy is balanced by the
loss of wave energy via wave-wave scattering into Landau
damped modes and quasi-linear diffusion of the electron dis-
tribution. It is specifically these weak steady wave growth rates
that necessitate an efficient two-timescale kinetically self-
consistent simulation method, such as the one employed in this
study. Fully kinetic simulations (e.g., PIC codes) need stronger
drivers in order to overcome noise and run time constraints.
However, stronger drivers inevitably result in unphysically
large wave intensities.

While our runs were very long from the perspective of 2-D
kinetic plasma simulations (>10°w,,'), the physical times
represented (approximately tens of milliseconds) are compa-
rable in length to some observed Langmuir wave bursts. One
consequence of these long weakly driven runs is the formation
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of secondary plateaus in the evolved distribution function. In
particular, these simulations produced a backward plateau
with an energy near that of the primary forward plateau, as
well as a secondary forward plateau with an energy of approx-
imately 1/9 of the primary plateau. This finding suggests a
possible generation mechanism for multiple plateaus observed
in measured electron distributions.

In our simulations the antiparallel plateau is due to the
backscatter of beam-excited Langmuir waves off an ion acous-
tic density response. Because the wave-wave and wave-particle
interaction timescales are on the same order, the backscattered
Langmuir waves are able to flatten the electron distribution in
the backward direction via quasi-linear diffusion, creating the
backward, or antiparallel plateau. The secondary forward par-
allel plateau is the result of the beam-excited Langmuir waves
coupling to the ion acoustic density fluctuations created by the
original backscatter. The ion acoustic waves produced in our
simulations at k;, ~ 2k, have frequencies of approximately
300 Hz. ELF wave power near this frequency has been ob-
served by Alaska 93 [Delory, 1996].

The simulation parameters were varied extensively, and the
qualitative results presented in section 3 prove to be robust,
occurring in a wide range of parameter sets. For example, in
another simulation run the initial beam and halo density were
approximately doubled (n,/n, = 0.0011 and n, =
0.065n,), the beam velocity was decreased (v, = 35v,), and
the replenishment length was halved (L = 360,000A,). This
run had a very similar initial transient stage, with beam-excited
Langmuir waves backscattering to on-axis and off-axis modes,
resembling Figure 6b. The wave spectrum relaxed to a similar
state to that in Figure 6d. The reduced electron distribution
showed similar features in the backward and forward direc-
tions during both the initial and near—steady state stages of the
simulation. The timescales were also similar. In fact, simula-
tion runs for a wide range of halo densities, beam densities,
beam velocities, and replenishment lengths gave essentially the
same qualitative results. The results were independent, both
qualitatively and quantitatively, of grid cell size and time step,
provided both were sufficiently small. Increasing the initial
noise level caused the instability to begin sooner.

Quantitatively, the steady state wave levels depend on a
combination of the beam density n,, beam replenishment
length L, and halo density 7. Variation of the beam replen-
ishment length L causes the wave levels to increase or de-
crease. Shorter replenishment lengths result in stronger beam
replenishment and higher wave levels for a given beam density.
For a given replenishment length, higher beam densities will
result in higher steady state wave levels. However, a simulation
with a relatively high beam density but very long replenishment
length can result in lower wave levels than one with a very
tenuous beam but with a short replenishment length. While
many combinations of n,, and L result in the same steady state
wave levels, the wave levels are more sensitive to beam density
than replenishment length. Upon performing simulations for
various values of n, and L, we found that while L must be
increased by a factor of ~5 to decrease the wave levels by a
factor of 2, the beam density n,, only needs to be decreased by
a factor of ~1.5 to decrease the wave levels by a factor of 2.

The modulation frequency is also affected by the replenish-
ment length and beam density. This can be understood by
studying Figure 3b (the initial growth rate versus k£ , ). When
this curve is plotted for many different values of beam density,
it is easy to see that the perpendicular width of the growth rate
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depends on the maximum growth rate. Lower beam densities
give narrower regions of growth in k, and hence narrower
modulation frequency spectra. Likewise, higher beam densities
result in wider modulation frequency spectra. Decreasing the
replenishment length effectively increases the growth rate, as
described above. This, in turn, results in a wider modulation
frequency spectrum. However, as with the wave amplitudes,
the modulation frequency is less sensitive to replenishment
length than to beam density.

The effect of changing the halo density is more complicated.
Decreasing the halo density n,, has two effects. The most
obvious effect is to decrease Cerenkov damping and allow
higher levels of beam-resonant Langmuir waves. The second
effect is more subtle. Decreasing the halo density also has the
effect of widening the k-space Langmuir spectrum in the per-
pendicular direction, since the halo component of the reduced
electron distribution also controls the Doppler damping. Since
the Langmuir frequency is much more sensitive to k£, than to
k., it is the perpendicular width of the k-space spectrum that
controls the width of the frequency spectrum. Increasing the
perpendicular width of the k-space spectrum increases the
range of frequencies of the Langmuir waves in the simulation.
The beating of waves of many different frequencies results in a
relatively fast typical modulation frequency of the Langmuir
wave envelope. Thus decreasing the halo density results in
faster typical modulation frequencies. Since a more tenuous
halo also allows for higher wave levels, it is difficult to obtain
a desired amplitude and typical modulation frequency simul-
taneously.

The main reason why our simulation wave amplitudes ex-
ceed the observed amplitudes is the complicated dependence
of the wave amplitudes and modulation frequency spectra on
the halo density n,,, beam density n,, and replenishment
length L. Attempting to decrease the amplitudes further by
increasing the replenishment length, decreasing the beam den-
sity, or increasing the halo density narrows the modulation
frequency spectrum, resulting in much slower modulations
than those in the Bidarca event in question. Other wave events
have been observed, however, with these slower modulations
[Boehm, 1987].

As mentioned in section 3.2, we ran our simulations out to a
physical time of 47 ms, with a near-steady state occurring for
times >4 ms, giving Langmuir wave power for 43 ms. This is
consistent with the observed burst durations of 20-100 ms in
the sense that the observed bursts also show Langmuir wave
power for timescales of many tens of milliseconds [Boehm,
1987]. In its present form it is likely that our model results in
a true steady state, which is inconsistent with Langmuir bursts
of finite duration. To properly model such a finite length burst
would require additional time dependencies in the source
terms of our model (e.g., time-dependent beam parameters).
For example, a beam velocity that decreases with time would
model the typically observed velocity dispersion in field-
aligned electrons more accurately [Ergun et al., 1993]. This
would cause the primary parallel shoulder to decrease in en-
ergy with time. As a result, the antiparallel shoulder and sec-
ondary parallel shoulder would also decrease in energy with
time. The energy shift of the antiparallel and secondary par-
allel plateaus may be delayed with respect to the energy shift in
the primary parallel plateau by the wave-particle interaction
time (=~2-4 ms). The inclusion of such time dependencies in
the beam parameters would be an obvious extension for future
simulation studies. The absence of this effect in our model may
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be one possible cause of the larger wave amplitudes produced
by our simulations in comparison to the observed wave ampli-
tudes. If the beam density were gradually increased and sub-
sequently decreased to mimic a burst, one would expect a
lower total wave energy (integrated over the simulation time).

Another possible explanation of the difference between the
simulation results and observations may be that our model
does not include lower hybrid waves, which would provide an
additional channel of decay for beam-excited Langmuir waves,
resulting in lower Langmuir wave levels. We emphasize that
our work is a first study of the competition between nonlinear
wave-wave and wave-particle effects in the auroral ionosphere.
As a first step, we have included as our wave-wave effects
interactions between magnetized Langmuir waves and ion
acoustic waves. A more complete study should include inter-
actions between magnetized Langmuir waves, ion acoustic
waves, and lower hybrid waves. It might be possible to con-
struct a three-timescale Zakharov equation model accounting
for coupling between Langmuir, ion acoustic, and lower hybrid
waves; however, this would be difficult because of the broad-
band nature of lower hybrid waves. We also note that while
there is strong evidence for lower hybrid waves at higher alti-
tudes [Stasiewicz et al., 1996; Bonnell et al., 1997], the observa-
tional evidence for lower hybrid waves below 700 km is mar-
ginal.

Furthermore, side scatter off lower hybrid waves cannot
produce Langmuir waves with significantly different phase ve-
locities than the beam-excited Langmuir wave phase velocities.
Thus one would not expect side-scattered Langmuir waves to
produce distinct multiple shoulder features in the electron
distribution consistent with observations. Shoulder features in
the electron distribution antiparallel to the precipitating elec-
tron beam cannot be produced by coupling between Langmuir
and lower hybrid waves because side scatter does not produce
antiparallel Langmuir waves. We do not expect the inclusion of
lower hybrid waves to effect our central conclusion, namely,
that wave-wave interactions between Langmuir and ion acous-
tic waves are important in forming multiple shoulder features
in the reduced electron distribution.

There are, of course, other possible explanations for multi-
ple plateau features in observed reduced electron distributions.
The most obvious contender would be the existence of multiple
remote sources for accelerated precipitating field-aligned elec-
trons. One may also consider spatial inhomogeneities to ex-
plain the multiple shoulders. That is, if the time interval over
which the distribution is measured covers a period when the
spacecraft moves from one domain to another, each having
different beam characteristics, then one may observe multiple
shoulders. However, this would not explain the antiparallel
plateaus unless the beams happened to be propagating in op-
posite directions.

While our simulation parameters are reasonable, they are
not universal. In principle, one should be able to find param-
eters which do not produce multiple shoulders. The fact that
our simulations produce multiple shoulders which are some-
what consistent with observations suggests but does not prove
that our model explains the observations. However, because
our proposed mechanism makes specific predictions regarding
the relative velocities of the various plateau features, it is
possible, in principal, to test whether there is a clearly identi-
fiable subset of distributions with multiple plateaus that are
consistent with our model.
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